Конспект урока для 8 класса «Повторение основных понятий, связанных с прямоугольным треугольником»

Рис. 1

;

 – катеты;$  – гипотенуза.

Также в прямоугольном треугольнике сумма острых углов равна : .

Для прямоугольного треугольника также верна теорема Пифагора: .

Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.

, .

Определение

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.

,$ .

Определение

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.

, .

. Аналогично: .

Также можно получить формулу для связи длин двух катетов: $.

. Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:

, . Тогда: . Доказано.

Аналогично: .

Рассмотрим следующую важную задачу.

Задача

Даны прямоугольные треугольники$ . Кроме того, .

Доказать:.

Доказательство

 (так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .

Отсюда получаем: .

.

$.

Доказано.

Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.

.

Примечание: 

Доказательство

, тогда:  (при доказательстве мы пользовались теоремой Пифагора: ).

Доказано.

Рассмотрим пример, иллюстрирующий связь тригонометрических функций.

 – прямоугольный (),$ .

Найти: 

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

Ответ: .

На этом уроке мы рассмотре$ли понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Post Comment