Конспект урока по Алгебре «Системы уравнений второй степени» 9 класс

Конспект урока алгебры, проводимого в 9 кл,

по теме: «Системы уравнений второй степени».

Учитель: Щёкина Н.А.

Тема урока: «Решение систем уравнений второй степени».

Цели урока:

  • Усвое$ние основного приёма (аналитического) решения систем уравнений второй сте$пени – способа подстановки;

  • Продолжение формирования умений решать системы уравнений второй степени;

  • Развитие умений преодолевать трудности при решении математических задач;

  • Развитие математической речи.

Оборудование:

  • карточки с системами уравнений второй степени

  • карточки с алгоритмами решения квадратных уравнений, систем уравнений способом подстановки;

  • карточки с домашним заданием;

  • карточки с заданиями – заполнить пропуски в решении;

  • учебник «Алгебра – 9 класс» Макарычева Ю.Н., под ред. С.А.Теляковского.

План урока:

    1. $Организационный момент

    2. Устный опрос

    3. Проверка домашнего задания

    4. Практическая часть

    5. Самостоятельная работа

    6. Задание домашней работы

    7. Итоги урока

    Ход урока:

    $2. Устный опрос. Задания № 1 — № 4 записаны на доске.

    1. Найдите значения выражения:

    2* (-3) ; 16/-4 ; -14/2 ; -20:5 ; -4*(-3) ; √4 ; 52 ; √36 ; (-9)2.

    2. Что является графиком данного уравнения

    х2 + у2 =9 ; 7х — 2у=5 ; у=10/х ; у=х2 +5 ; х + у=7 ; ху=1 ; у=4х ?

    3. Раскройте скобки:

    $(8 + х)*х ; (х + 3)2 ; у*(4 – у) ; (5 – х)2 ; — (6 – 5х) .

    4. Решите уравнения:

    х 2=36 ; х + 2 = 5 ; (х – 2)*(х +4) ; х2 = 7 ; х – 3 = -1 ; х2 = -4 .

    • Какие уравнения вы знаете?

    • Какое уравнение называется линейным? Квадратным? Биквадратным?

    • $Сколько корней может иметь линейное уравнение? Биквадратное уравнение?

    • Сколько корней может иметь квадратное уравнение? От чего это зависит?

    3. Проверка домашнего задания.

    Задание на дом было дифференцированным. №1 – обязательный уровень – для учащихся, ко$торым достаточно оценки «3» по математике; № 256 – дополнительный уровень – для учащихся, которым оценки «3» мало.

    1(а). х – у = 6;

    х * у = 16. Ответ: (8;2) ; (-2;-8).

    256(б). u + 2v= 4;

    u² + uv –v = — 5. Ответ: u= -3; v=3,5; u= -2; v=3.

    Дополнительные вопросы:

    • Какое уравнение системы является уравнением первой степени?

    • Что является графиком уравнения первой степени?

    • Какое уравнение называется квадратным уравнением? Биквадратным уравнением?

    Устно проверить другие примеры домашней работы.

    1(б). Ответ: ( 4; -3) ; ( -3; 4) .

    1(в). О$твет: ( 5; 2) ; ( 2; 5) .

    256(а ). Ответ: ( -2; 1) ; ( 2; -1) .

    4. Практическая часть.

    Ребята, а кто может решить вот эту си$стему уравнений? Эта система уравнений соответствует обязательному уровню обучения по данной теме. Система на оценку «3».

    1. у – х = -2 ;

    х2 – у = 14 . Ответ: ( 4; 2) ; ( -3; -5).

    А сейчас откройте учебник и посмотрите на систему уравнений, записанную под № 252(б). Эта система уравнений выше обязательного уровня обучения. Система уравнений на оценку «4». Кто сможет её решить на доске?

    252 (б). (х – 1) * (у +10) = 9 ;

    х – у = 11 . Ответ: ( 4; 2) ; ( -3; -5).

    $

    Дополнительные вопросы учащимся, работающим на доске.

    5. Самостоятельная работа.

    Сейчас, ребята, вы выполните самостоятельную работу и покажете – какие же ваши знания-познания по теме «Системы уравнений второй степени». Самостоятельная работа состоит из двух заданий минимального уровня обучения, одного задания на оценку «4» и одного задания на оценку «5». Я вам предлагаю выполнить любые два задания, которые соответствуют ваше$му уровню обучения. Можно выполнить два задания на оценку «3»; одно задание на оценку «3» и одно задание на оценку «4»; одно задание на оценку «4» и одно задание на оценку «5».

    Учащимся – Павлухину Н., Пугинскому Д., Смирнову А. (слабоуспевающим) — даю задания – заполнить пропуски в решении.

    Ребята, а кто может без подготовки самостоятельно решить на доске трудное задание, задание на оценку «5»?

    308 (а). х2 + у2 = 40 ;

    ху = -12.

    Отве$т: ( 6; -2) ; ( -6; 2) ; ( 2; -6) ; ( -2; 6).

    Задания для самостоятельной работы:

    х – у = 4 ; 2х + у = 7 ;

    ху = -3. х2 – у = 1.

    Ответ: ( 3; -1) ; ( 1; -3). Ответ: ( 2; 3) ; ( -4; 15).

    ———————————————————————————————

    306 (б). 2х – у = 1 ;

    ху – у2 + 3х = -1. Ответ: ( 0; 1).

    ———————————————-$————————————————

    312 (б). 1/х – 1/у = 1/20 ;

    х + 2у = 14 . Ответ: ( 4; 5) ; ( 70; -28).

    6. Задание на дом.

    1. а) х + у = 6 ; б) у – х = 2 ;

    ху = 8 ; у2 – 4х = 13 .

    ————————————————————————————————

    $

    263 (а;г) ; № 258 (а).

    7. Итоги урока.

    Еще записи

    Leave a Comment