Конспект урока по Алгебре “Вывод формул для вычисления координат вершины параболы” 9 класс

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники.

Проект урока по алгебре в 9 классе (гуманитарный$ профиль).

«Наиболее глубокий след оставляет то, что человек открыл сам».( Д. Пойя.)

Тема урока: «Вывод формул для вычисления координат вершины параболы».

Цели урока: $познавательные:

  1. Создать условия для включения учащихся в проблемную ситуацию, принятия и разрешения возникшей проблемы.

  2. Формировать учебно – интеллектуальные умения: анализировать, обобщать, сравнивать.

  3. Формировать умения применять ранее полученные знания о функции для получения новых знаний.

  4. Нахождение нового способа определения координат вершины и оси симметрии параболы квадратичной функции . Метапредметные, в том числе: регулятивные: поставить учебную задачу на основе соотнесения того, что уже известно и усвоено учащимися, и того, что ещё неизвестно; определить последовательность действий для решения поставленной задачи; откорректировать результат с учётом оценки сам$им обучающимся, учителем, учениками; осознать качество и уровень усвоения нового материала. Коммуникативные: научиться инициативному сотрудничеству в поиске решения поставленной задачи; научиться с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации.

Ожидаемый результат:

$

осознание, принятие и разрешение проблемы учащимися;

-формирование способов получения новых знаний через сравнение и сопоставления фактов, способа от частного к общему;

– узнают формулы нахождения координат вершины и оси симметрии параболы для функций вида y = ax2+bx+c.

Тип урока:$ урок постановки учебной задачи. Методы обучения – наглядно-иллюстративный, словесный, обучение в сотрудничестве, проблемный, элементы технологии критического мышления.

Оборудование: компьютер, мультимедийный проектор, демонстрационный экран, слайды презентации по теме: «Формулы для нахождения координат вершины параболы»; листы формата А3; цветные маркеры.

Технология – системно-деятельностный подход.

$

Этапы урока:

  1. Психологический настрой(мотивация).

  2. Актуализация опорных знаний(создание ситуации успеха).

  3. Постановка проблемы.

  4. Формулирование темы и цели урока.

  5. Решение проблемы.

  6. Анализ хода решения проблемы.

  7. Применение результатов решения проблемы в п$оследующей деятельности.

  8. Подведение итогов урока (итог «глазами» ученика, итог «глазами» учителя.).

  9. Домашнее задание.

Ход урока:

  1. Психологический настрой.

Задача: Учится решать общую задачу и работать в коллективе(работа в группах по 5 чел.).

Ребята, на протяжении последних четырёх уроков мы занимались изучением квадратичной функции, но знания наши пока е$щё не совсем полные, поэтому мы продолжаем изучать квадратичную функцию с целью узнать что-то новое об этой функции.

Мотивация учащихся к самостоятельной постановке темы и цели урока.

$

Функция и ее график.

; ;

Не выполняя построения графика функций, можем ли мы ответить на вопросы:

  1. Что является графиком функций?

  2. Какая прямая является осью симметрии (если она существует)?

3. Есть ли вершина, каковы её координаты?

Знаю

1.

2.

3.

…..

$ Хочу узнать

1.

2.

3.

…..

Узнал

1.

2.

3.

…..

Таблица заполняется по ходу проведения урока.

  1. Актуализация опорных знаний и умений учащихся. Разминка. 1. Вынести за скобки старший коэффициент: 5x2 + 25x -5; ax2 + bx + c. 2.Выделить удвоенное произведение: ab; ax; b/a. 3.Возвести в квадрат: $b/2; c2/a; 2a/3b. 4.Представить в виде алгебраической суммы: а – в; x –(- b/2a).

Объясните, как, зная вид графика функции y =ƒ(x), построить графики функций:

а) y =ƒ(xa)$, – с помощью параллельного переноса на а единиц вправо вдоль оси х;

б) y =ƒ(x) + b, – с помощью параллельного переноса на b единиц вверх вдоль оси y;

$

в) y =ƒ(x – а) + b, ↔ на а единиц, ↕ на b единиц;

г) Как построить график функции y = (x – 2) 2 + 3 ? Что является ее графиком?

Назовите вершину параболы.
Графиком является парабола y = $x2 с вершиной в точке (2; 3).

Назовите координаты вершины параболы: y =x– 4x + 5 ( проблема ). Почему нельзя определить координаты вершины параболы по виду функции? (другой вид имеет квадратичная функция ).

Деятельность учащихся:

Строят речевые конструкции с использованием функциональной терминологии.

Обсуждение ответов. Сравнивают, сопоставляют с ранее изученными функциями, выбирают и записывают на доске знания и умения, которые им могут понадобиться для решения проблемы в столбик «ЗНАЮ»:

1.

2.

3.

4.

$ 5. знаю, как построить графики этих функций

6. знаю, как найти координаты вершины этих парабол и ось параболы

В столбик «Хочу узнать»:вершину, ось симметрии параболы .

Учащиеся могут записывать в столбики «ЗНАЮ» и «ХОЧУ ЗНАТЬ» функции как в общем виде, так и частные случаи. Постановка учебной задачи: найти координаты вершины параболы, если квадратичная функция задана в общем$ виде y = ax+ bx + c. Учащиеся формулируют и записывают в тетрадь тему и цель$ урока. (Вывод формул для вычисления координат вершины параболы. Научиться находить координаты вершины параболы новым способом – по формулам).

Решение проблемы.

Деятельность учащихся: Сравнивая «старые» знания с новыми знаниями учащиеся предлагают выделить полный квадрат. На конкретных примерах ; и получают соотве$тственно ; . Находят координаты вершины и уравнение оси симметрии, Понимают, что с задачей справились, т.к. привели новую функцию к знакомому виду.

Учащиеся выделяют полный квадрат для функции ; , сравнивают полученный результат, делают вывод по данной функции. Находят координаты вершины и ось симметрии.

Сможете ли вы назвать вершину и ось параболы, если функция задана в общем виде , не выделяя полного квадрата? Как вы будете действовать в этом случае? И как применить ваш предыдущий опыт по нахождению вершины и оси параболы?

Деятельность учащихся:

$ Опираясь на уже имеющиеся знания, опыт учащиеся начинают понимать, что нужно идти дальше, от частного к общему, проводят доказательства в общем виде.

. Появляются новые затруднения. В группах появляется решение: . Анализ хода решения проблемы. Заслушивается один представитель от каждой группы.

Сравнивают, а$нализируют записи и , записывается в тетрадь одно общее решение поставленной задачи – формулы координат вершины параболы .

.

Учащиеся делают вывод: координаты вершины и ось параболы для функции можно найти рациональным способом.

Применение результатов по решению проблемы в последующей деятельности.

Деятельность учащихся:

Решение заданий из учебни$ка №121; 123. Найдите координаты вершины параболы новым рациональным способом. Запишите уравнение прямой, которая является осью симметрии параболы.

Подведение итогов (рефлексия учебной деятельности на уроке).

Вернемся к таблице и заполним столбик «УЗНАЛ».

Итог урока «глазами» учащихся:

ЗНАЮ

$

ХОЧУ УЗНАТЬ

УЗНАЛ

1.

2.

3.

$

4.

5. знаю, как построить графики этих функций

6. знаю, как найти координаты вершины этих парабол и ось параболы

7. метод выделения полного квадрата

8. как находить координаты вершин, ось параболы.

1. координаты вершины параболы

2. уравнение оси симметрии параболы

1. координаты вершины параболы

2 .как вывести формулу

3. рациональный способ нахождения оси параболы и координат вершины параболы

Итог « глазами учителя»:

  1. Цель урока достигнута.

  2. $$ Учащиеся осознали, приняли и разрешили возникшую проблему.

  3. В процессе решения учебно-проблемной задачи учащиеся не только приобрели новые знания: зависимость коэффициентов квадратного трехчлена и координат вершины параболы, уравнения оси симметрии, но самое главное на уроке – формирование обобщенных способов приобретения новых знаний, самостоятельного анализа проблемы и нахождения неизвестного.

Домашнее задание: п.7 №122 ;127(б) ;128.

P.S. Представленный урок проведен 15 октября 2014 года в рамках городского семинара учителей математики по теме «$Формирование УУД на уроках математики».

На этапе «Применение результатов…» при решении заданий из учебника некоторые учащиеся начали понимать ценность своего «открытия»: более простого способа нахождения координат вершины и уравнения оси симметрии, а другие не скрывали радости, ведь не надо «мучаться» с выделением полного квадрата. Но$ самое главное – сделали все сами!

Еще записи

Leave a Comment