Использование исторического материала по теме «Начала» Евклида на уроках математики

Использование исторического материала по теме « Начала» Евклида на уроках математики.$

Гагарина Лидия Вячеславовна

учитель математики

МОУ «ООШ п.Солянский

Пугачёвского района,

Саратовской области

$Исторический материал по теме « Начала» Евклида

Там, где с морем сливается Нил,

В древнем жарком краю пирамид,

математик греческий жил –многознающий,

мудрый Евклид.

Геометрию он изучал.

Геометрии он обучал.

Написал он великий труд.

Эту книгу «Начала» зовут.

$Евклид – древнегреческий математик (III век до н.э.) работал в Александрии и написал несколько трудов, которые стали основой для образования и использовались около 2200 лет.

В течение двух тысяч лет геометрию узнавали либо из “Начал” Евклида, либо из учебников, написанных на основе этой книги. Классическую геометрию стали называть евклидовой. Об этом поразительном человеке история сохранила настолько мало сведений, что не редко высказы$ваются сомнения в самом его существовании.

(легенда об изучении геометрии) О$дна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Учитель Евклида - Платон

(Открытие Евклидом математической школы) В Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, ч$то он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

( Ватиканский манускрипт)

«Начала» оказали огромное влияние на развитие математики вплоть до Новейшего времени. Книга переведена на множество языков мира. По количеству переизданий «Начала» не имеют себе равных среди светских книг.

(о структуре «Начала»)

Как современников, так и последователей Евклида п$ривлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

($что изучает каждая книга)

I книга – изучаются свойства треугольников и параллелограммов;

II книга – посвящена «геометрической алгебре»;

III-IV книги – излагается геометрия окружностей;

V книга – вводится общая теория пропорций;

$VI книга – прилагается к теории подобных фигур;

VII-IX книги – посвящены теории чисел;

X книга – строится классификация иррациональностей;

XI книга – содержит основы стереометрии;

XII книга – доказываются теоремы об отношениях площадей кругов, объёмов пирамид и конусов;

XIII книга – посвящена построению пяти правильных многогранников.

$( о первой книге Евклида)

Первая книга Евклида начинается с 23”определений”, среди них такие:

-точка есть то, что не имеет частей;

-линяя есть длина без ширины;

-линия ограничена точками;

-прямая есть линия, одинакова расположенная относительно всех$ своих точек;

-две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолжены, не встречаются…

Задачи по геометрии и их решения Евклидом)

Из 1-й книги «Начал»

1. Данный прямолинейный угол рассечь пополам.

$2.Данную ограниченную прямую (т.е. отрезок) рассечь пополам.

Решение.

1.Чтобы разделить угол ВАС пополам, Евклид берёт на АВ произвольную точку D и на АС откладывает АЕ = А D. Далее, на DЕ он строит равносторонний треугольник DЕF. Прямая АF делит угол ВАС пополам.

2.Чтобы разделить отрезок АВ пополам, Евклид строит на нём равносторонний треугольник АВС, делит угол АСВ пополам прямой СD. Точка D – середина отрезка АВ.

(Алгоритм Евклида)

Алгоритм Евклида – это способ нахождени$я наибольшего общего делителя двух целых чисел, двух многочленов а также наибольшей общей меры двух соизмеримых отрезков.

Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток -$ на второй и т.д. Последний ненулевой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел. Приведём пример. Пусть а=777, b=629. Тогда 777=629*1+148, 629=148*4+37, 148=37*4.Последний ненулевой остаток 37 есть наибольший общий делитель чисел 777 и 629.

Алгоритм Евклида известен издавна. Ему уже более 2000 лет. Этот алгоритм сформулирован в “Началах” Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного и т.д. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида (иногда называемый методом попеременного вычитания) был известен ещё пифагорейцам. К середине $XVI в. алгоритм Евклида был распространён на многочлены, от одного переменного в дальнейшем удалось определить алгоритм Евклида и для некоторых других алгебраических объектах.

$Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший делитель d чисел a и b$ в виде d=ax+by (x;y- целые числа), а это позволяет находить решение Диофантовых уравнений 1-й степени с двумя неизвестными. Алгоритм Евклида является средством для представления рационального числа в виде цепной дроби. Он часто используется в программах для электронных вычислительных машин.

($ «Начала» - памятник древности )

Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалас$ь как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6—7 изданий. До XX века книга считалась основным учебником по геометрии не только для школ, но и для университетов.

( о других сочинениях Евклида)

«Данные» - задачи, решаемые с помощью геометрической алгебры.

«О делении фигур» - задачи на построение.

«Явления» - астрономическое сочинение.

«Оптик$а»

«Сечения канона» - небольшой трактат, содержит десять задач о музыкальных интервалах.

Изложение во всех этих сочинениях, как и в «Началах» подчинено строгой логике, причём теоремы выводятся из точно сформулированных физических гипотез и математических постулатов.

( Выдающиеся геометры после Евклида)

Евклид умер между 275 и 270годами до н.э. $Большой вклад в дальнейшее исследование различных вопросов геометрии внесли Архимед, Аполлоний Пергский. После Аполлония в Древней Греции не было крупных открытий в области геометрии. Труды Архимеда и Аполлония считались слишком сложными, они не читались, и часть их со временем была утеряна

(притча о трех ученых)

Чтобы попасть к нему в ученики и постигнуть мудрость старика, морем плыли, шли изда$лека…

А вопросы были нелегки.

Что есть точка? - вопрошал Евклид, взглядом обводя своих гостей.

$Точка — это то, в чём нет частей, - Архелай кудрявый говорит.

Правильно ответил. Молодец! — улыбнулся ласково мудрец.

Ну, а в чем же линии секрет?

Есть длина, а ширины в ней нет!

Снова в точку!

Я б хотел узнать: для чего учёным хочешь стать?

Ведь дороги к знаньям - непросты?!

$

Я богатым стать хочу, как ты! Слышал я: наука — это клад!

Я уверен - ты, Евклид, богат.

Две монеты достаёт мудрец - их берёт растерянный юнец.

Всё! Ступай! - учёный говорит.

Ты теперь богаче, чем Евклид…

$Тёплый ветер вдруг подул сильней, пальмы раскачал на берегу.

Кто поделит круг на пять частей?

Архилох поднялся: Я смогу!

Осветило солнце смуглый лик.

Циркуль сжав уверенно в руке, круг он делит ловко на песке.

Головой кивнул ему старик:

Хорошо!

Потом спросил Евклид:

$А тебя к науке что манит?! - юношу погладил по плечу.

Знаменитым стать,как ты, хочу.

Слышу всюду: «Как умен Евклид!»

Значит, славу знание сулит!

Взял Евклид заточенный тростник, пишет на папирусе старик:

«Люди! Он умней, чем я, Евклид».

На, иди! Теперь ты знаменит!

$Ну, а третий думает… О чём?

Что-то чертит, чем-то увлечён…

Что ты чертишь?

Линии черчу. Теорему доказать хочу.

Но другим путем, не как Евклид! - юноша упрямо говорит.

$Слёзы на глазах у старика: он нашёл себе ученика.

Кто же ты?

И слышит он в ответ:

Я из Сиракуз.

Я — Архимед.

Данный материал целесообразно использовать на уроках по следующим темам:

-Начальные геометрические сведения

$-аксиомы геометрии

-нахождение НОД

Цель урока: позна$комить с формулировками утверждений во времена Евклида и сравнить их с современной формулировкой.

Задачи урока:

- Развивать, познавательный интерес к математике, логическое мышление.

- Активизировать познавательную активность.

- Расширять кругозор учащихся.

$Этапы урока: актуализация знаний или «открытие» новых знаний

Формы преподнесения исторического материала: сообщение учащихся, презентация проекта.

Виды учебной деятельности:

- решать задачи, анализируя и осмысливая её текст;

- извлекать необходимую математическую информацию, строить логическую цепочку рассуждений.

$Планируемые образовательные результаты:

- представление о математической науке как сфере человеческой деятельности, об этапах её развития;

- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной фо$рме;

- развитие представления о числе, овладение символьным языком математики, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику.

Post Comment